modbatt

Modular Battery Technologies Inc. Solutions for a Sustainable Future

Open Technology Standard – Extendable Battery Framework™ (EBF)

• Comprehensive suite of technologies

- Charge Node™ self-contained intelligent module with internal BMS and isolation
- Charge Mesh[™] resilient, on-demand configurable power system architecture
- Secure device-linked digital twin NFTs with enforceable control authority

EBF High Voltage Charge Node™ Module Specification – OPEN STANDARD, ROYALTY FREE

- Several sizes and voltages
- Safety internal relays, series-only connections, precise SOC/SOH prevents thermal runaway
- Security use control and authentication through digital twin NFTs

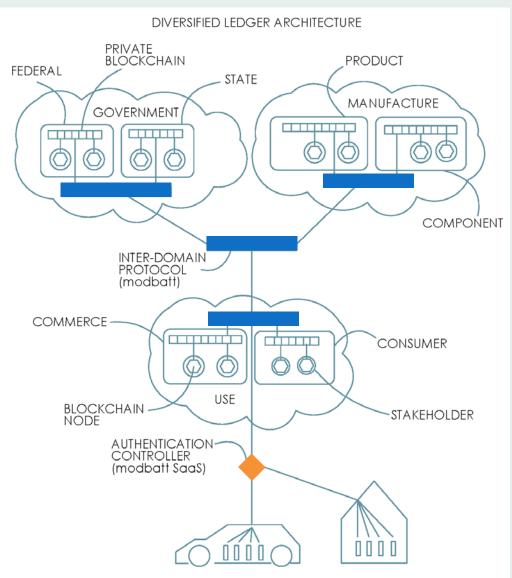
EBF Diversified Ledger Architecture

- Multiple ledgers in separate cross-referenced domains
- Use Control digital twin NFTs linked with modules and vehicles

ModBatt business model – ModBatt is a technology and transactions company, NOT a manufacturer

Convenience fees on transactions (ModBatt System)

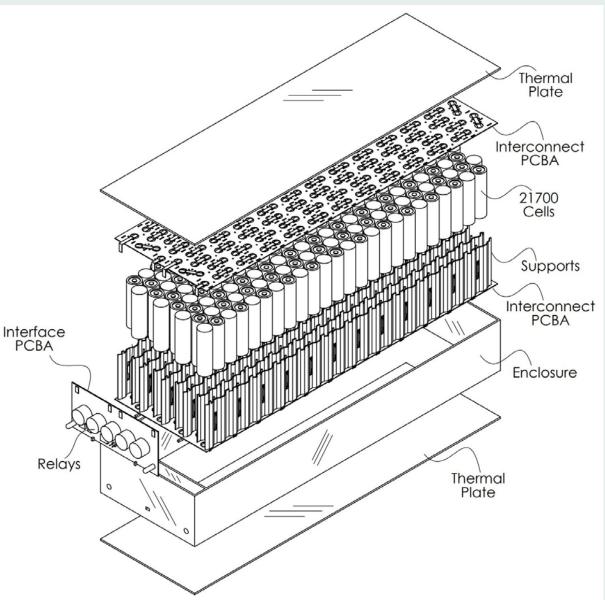
modbatt


ModBatt EBF System Specification

Open Standard based on ModBatt proprietary IP	
Royalty free to manufacturers of certified batteries and vehicles	Example
• •	Charge Node™
 Administered by Safe Battery Alliance – 501(c)(6) Nonprofit 	800V
	3KWh
Charge Mesh™ on-demand configurable resilient modularity	40KW peak
 Charge Node[™] Module Physical Specification 	200 x 21700 cells
 Charge Node[™] Module Electrical Specification – 	3" x 9" x 15"
isolation, BMS, communications, security, use control through digital twin NFTs	35 lbs
 Supports dissimilar Charge Nodes[™] in parallel 	
	Motorcycle: 1-5
Full ecosystem support	Car: 5-30
 Open hardware and software standard – Extendable Battery Framework[™] 	Truck: 50-100+
 Use control – Diversified Ledger Architecture, digital twin NFTs 	
 Full lifecycle management with integrated regulatory oversight and reporting 	
 ModBatt (direct and licensed) IT infrastructure for transactions 	

- ModBatt IT infrastructure for battery transactions
- Multiple Proof of Stake private blockchains
- Cross-referenced domains with secure protocols
- Digital twin NFTs securely linked with modules and vehicles (patents pending)
- Active use event enforcement mechanisms through authentication controllers
- Open source based with proprietary layers
- Integration with existing systems
- Gradual transition
- Multi-domain chain of custody enforcement

Diversified Ledger Architecture

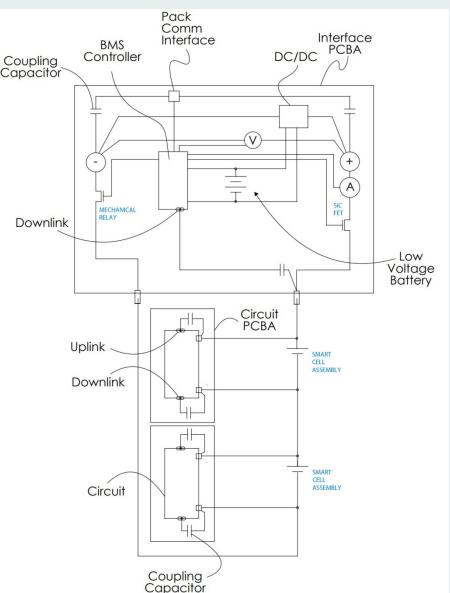


modbatt

Charge Node™ Module Physical Specification

Charge Node™ Mechanical Specification

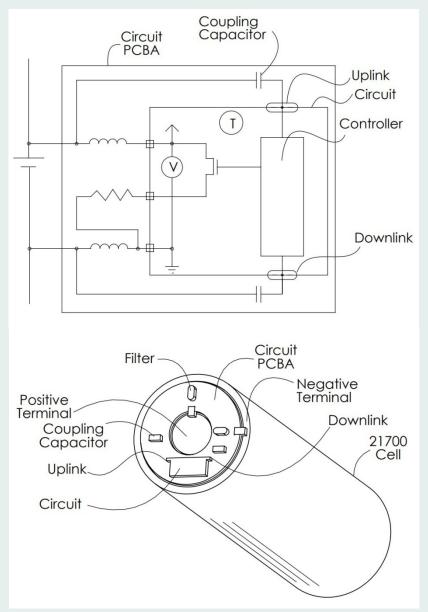
- Series connections only no uncontrolled or unmonitored current prevents thermal runaway
- Low impedance interconnect no need for fusible links
- Thermally conductive encapsulation
- Structurally robust
- Environmentally sealed
- All cells equally coupled to both thermal plates
- Facilitates external liquid cooling
- Multiple form factors/voltages



Charge Node™ Module Electrical Specification

Charge Node™ Electrical Specification

- Series connections only no uncontrolled or unmonitored current
- Relays on both terminals
- Mechanical relay on one terminal galvanic isolation
- SiCFET on other terminal fast response
- Smart cell assemblies V and T monitoring each cell, integrated balancing and heating
- Powerline Communications (PLC) between cells and BMS controller
- Powerline Communications (PLC) between modules and pack controller
- Secure protocols, unique module ID



Charge Node™ Scalable BMS Specification

Charge Node™ Smart Cell Circuit

- Compatible with all cell types and chemistries
- Temperature and voltage monitoring at each cell
- AC coupled transverse mode Powerline Communications (PLC) – BTLE transceivers
- Integrated balancing and heating (transistor in linear mode or resistor, heatsink to cell)
- Robust communications protocols
- Low cost IC using common IP blocks
- Unique ID for full lifecycle tracking and authentication

Proprietary information. Patents pending. © 2020-2022 Modular Battery Technologies Inc. dp@modbatt.com

Appendix A List of Filed IP

- 1. US17/086,865 PCT/US21/50518 HIGH VOLTAGE BATTERY MODULE WITH SERIES CONNECTED CELLS AND INTERNAL RELAYS Filed 02-NOV-2020 *module with series connected cells and relays* ALLOWED 5/19/22
- 2. US17/141,125 PCT/US21/53798 BATTERY MODULE WITH SERIES CONNECTED CELLS, INTERNAL RELAYS AND INTERNAL BATTERY MANAGMENT SYSTEM Filed 04-JAN-2021 *cell monitoring/conditioning circuit, PCBAs, methods*
- 3. US17/172,613 APPARATUS AND METHODS FOR REMOVABLE BATTERY MODULE WITH INTERNAL RELAY AND INTERNAL CONTROLLER Filed 10-FEB-2021 *authentication methods and circuits*
- 4. US17/182,072 PCT/US21/55047 BATTERY MODULE WITH SERIES CONNECTED CELLS, INTERNAL RELAYS AND INTERNAL BATTERY MANAGEMENT SYSTEM Filed 22-FEB-2021 (CIP) *AC coupled comms and methods*
- 5. US17/218,854 PCT/US21/54434 APPARATUS AND METHODS FOR REMOVABLE BATTERY MODULE WITH INTERNAL RELAY AND INTERNAL CONTROLLER Filed 31-MAR-2021 *system, pack and module controllers, blockchain*
- 6. US17/317,403 PCT/US21/55813 APPARATUS AND METHODS FOR MANAGEMENT OF CONTROLLED OBJECTS Filed 11-MAY-2021 *multi-domain management of controlled objects, NFT/blockchain*
- 7. US17/528,903 PCT/US21/60860 ELECTRICAL POWER SYSTEM WITH REMOVABLE BATTERY MODULES Filed 17-NOV-2021 *dissimilar modules in parallel*
- 8. US17/710,759 PCT/US22/24797 APPARATUS AND METHODS FOR MANAGEMENT OF CONTROLLED OBJECTS Filed 31-MAR-2022 *linking of identifiable records, authorizer device pairings*
- US17/828989 PCT/US22/xxx HIGH VOLTAGE BATTERY MODULE WITH SERIES CONNECTED CELLS AND INTERNAL RELAYS Filed 31-May-2022 *dissimilar relays, PLC control bus, linear and pwm modes*